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Exercise 1. To fulfill the requirements for a certain degree, a student can choose to take any 7
out of a list of 20 courses, with the constraint that at least 1 of the 7 courses must be a statistics
course. Suppose that 5 of the 20 courses are statistics courses.

1. How many choices are there for which 7 courses to take?

2. Explain intuitively why the answer to part 1. is not
(
5
1

)
·
(
19
6

)
.

Solution 1. 1. The result can be derived by either the ”complement” approach or by ”parti-
tioning”

• Complement: Denote the sample space of a student taking exactly 7 courses with S,
and the event of a student taking 7 courses such that at least 1 of them is a statistics
course with A ⊂ S. By the definition of the complement S = (A ∪ Ac). As A and
Ac are mutually exclusive ((A ∩ Ac) = ∅), it follows that |S| = |A| + |Ac|, implying
|A| = |S| − |Ac|. A student can choose 7 courses out of the 20,

(
20
7

)
ways. Ac ⊂ S

corresponds to the event, that a student takes exactly 7 courses, but none of them is a
statistics course, so they have to choose 7 out of 15, meaning

(
15
7

)
. Substituting back to

the formula

|A| =
(
20

7

)
−
(
15

7

)
= 71085.

• Partitioning: Denote with Bi the event, that a student takes exactly 7 courses, such
that i-many of these 7 are statistics courses. Then the previously defined event A can be
partitioned into the disjoint events A = B1 ∪ B2 ∪ B3 ∪ B4 ∪ B5, so |A| = |B1|+ |B2|+
|B3| + |B4| + |B5| follows. Focus on the event B3, and the others follow analogously.
First, the student must choose 3 statistics courses out of the 5 offered, that they can
do

(
5
3

)
ways. Then they have to pick the remaining 7 − 3 = 4 courses from the 15 non-

statistics courses, that they can do
(
15
4

)
different ways. Following the multiplication rule

|B3| =
(
5
3

)(
15
4

)
. Thus

|A| =
(
5

1

)(
15

6

)
+

(
5

2

)(
15

5

)
+

(
5

3

)(
15

4

)
+

(
5

4

)(
15

3

)
+

(
5

5

)(
15

2

)
= 71085

2. By
(
5
1

)
we count the ways the student can pick a statistics course and by

(
19
6

)
we count how

many ways they can pick the remaining 6 courses. However this approach counts picking the
course ”STAT-A” first and then ”STAT-B”, ”MATH-1”, ”MATH-2”, ”MATH-3”, ”MATH-
4”, ”MATH-5” from the remaining 4 + 15 = 19 statistics and non-statistics courses, and
picking the course ”STAT-B” first and then ”STAT-A”, ”MATH-1”, ”MATH-2”, ”MATH-3”,
”MATH-4”, ”MATH-5” as two separate instances, even though they correspond to the same
set of 7 courses.

1Exercises are based on the coursebook Statistics 110: Probability by Joe Blitzstein
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Exercise 2. A fair die is rolled n times. What is the probability that at least 1 of the 6 values
never appears?

Solution 2. Denote the event that the value i never appears with Ai. Then the probability of
interest is

P (A1 ∪ A2 ∪ A3 ∪ A4 ∪ A5 ∪ A6).

We can use the inclusion-exclusion formula to rewrite this probability as

P (A1 ∪ A2 ∪ A3 ∪ A4 ∪ A5 ∪ A6) =
∑
1≤i≤6

P (Ai)−
∑

1≤i<j≤6

P (Ai ∩ Aj)

+
∑

1≤i<j<k≤6

P (Ai ∩ Aj ∩ Ak)− · · · − P (A1 ∩ A2 ∩ A3 ∩ A4 ∩ A5 ∩ A6).

Using the naive definition of probability P(Ai) =
5n

6n
, as n many dice throws can have 6n different

outcomes by the multiplication rule, but if we count the throws when the value i never appeared, a
throw can have only 5 favorable outcomes, meaning n many throws can have 5n different favorable
outcomes. By similar logic P (Ai∩Aj) =

4n

64
for i ̸= j, as the number of favorable outcomes per throw

is 6−2 = 4, and P (Ai∩Aj∩Ak) =
(
3
6

)n
, etc. Note that P (A1∩A2∩A3∩A4∩A5∩A6) =

(
6−6
6

)n
= 0,

but it also follows directly, as A1 ∩ A2 ∩ A3 ∩ A4 ∩ A5 ∩ A6 is the event that none of the values
appeared at least once, that is clearly impossible. Finally, we have to count the number of terms
per sum. For a sum over the intersections involving ”s” many events there are

(
6
s

)
terms, as we

have to select the s many values out of the 6, that we do not want to appear. Hence

P (A1 ∪ A2 ∪ A3 ∪ A4 ∪ A5 ∪ A6) =

(
6

1

)(
5

6

)n

−
(
6

2

)(
4

6

)n

+

(
6

3

)(
3

6

)n

−
(
6

4

)(
2

6

)n

+

(
6

5

)(
1

6

)n

=
6∑

i=1

(−1)1+i

(
6

i

)(
6− i

6

)n

.

For example, after 10 throws there is still a 72.8% chance that one of the values never appeared,
while after 15 throws, this reduces to 35.6%.
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Figure 1: Probability of not seeing at least one of the faces, after n throws.
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Exercise 3. A spam filter is designed by looking at commonly occurring phrases in spam. Suppose
that 80% of email is spam. In 10% of the spam emails, the phrase “free money” is used, whereas this
phrase is only used in 1% of non-spam emails. A new email has just arrived, which does mention
“free money”. What is the probability that it is spam?

Solution 3. Let S be the event that an email is a spam and F be the event that an email has the
“free money” phrase. By Bayes’ rule,

P (S|F ) =
P (F |S)P (S)

P (F )
=

0.1 · 0.8
0.1 · 0.8 + 0.01 · 0.2

=
80

82

Exercise 4. A hat contains 100 coins, where 99 are fair but one is double-headed (always landing
Heads). A coin is chosen uniformly at random. The chosen coin is flipped 7 times, and it lands
Heads all 7 times. Given this information, what is the probability that the chosen coin is double-
headed? (Of course, another approach here would be to look at both sides of the coin—but this is
a metaphorical coin.)

Solution 4. Denote the event of the coin being double-headed with DH, while the event that the
chosen coin lands all 7 times as Heads with SH. Then the probability of interest is P (DH|SH)
and by Bayes’ rule and the law of total probability,

P (DH|SH) =
P (DH,SH)

P (SH)

=
P (SH|DH)P (DH)

P (SH|DH)P (DH) + P (SH|DHc)P (DHc)
.

As any of the coins are chosen with equal probability, P (DH) = 0.01, P (DHc) = 1−P (DH) = 0.99.
If the coin is double-headed, it must always land Heads, so P (SH|DH) = 1, while if it is a fair
coin, then by the multiplication rule P (SH|DHc) = (1/2)7 = 1/128. Therefore

1 · 1/100
1 · 1/100 + 1/128 · 99/100

=
128

227
≈ 0.564.

Exercise 5. A fair coin is flipped 3 times. The toss results are recorded on separate slips of paper
(writing ”H” if Heads and ”T” if Tails), and the 3 slips of paper are thrown into a hat.

1. Find the probability that all 3 tosses landed Heads, given that at least 2 were Heads.

2. Two of the slips of paper are randomly drawn from the hat and both the letter H. Given this
information, what is the probability that all 3 tosses landed Heads?

Solution 5. 1. Denote with C the number of tosses that landed Heads. Then the probability
of interest is P (C = 3|C ≥ 2). By the definition of conditional probability

P (C = 3|C ≥ 2) =
P (C = 3 ∩ C ≥ 2)

P (C ≥ 2)
=

P (C = 3)

P (C = 3) + P (C = 2)
=

1/8

1/8 + 3/8
=

1

4
,

where we used the fact that the event C = 3 is a subset of the event C ≥ 2, and that the
C ≥ 2 can be written as the disjoint union of the events C = 3 and C = 2. The probabilities
P (C = c) can be calculated as

P (C = c) =

(
3

c

)(
1

2

)c(
1

2

)3−c

,
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because out of three coins the ”c” many that landed as Heads can be picked
(
3
c

)
ways, and

following the multiplication rule, those landed as Heads with probability
(
1
2

)c
while the re-

maining 3− c coins landed as Tails with probability
(
1
2

)3−c
.

2. In addition to the previous notation, denote the number of slips that have the letter ”H” on
the two slips drawn with S. Then the probability of interest is P (C = 3|S = 2). By Bayes’
rule and the law of total probability

P (C = 3|S = 2) =
P (S = 2|C = 3)P (C = 3)∑

c∈{0,1,2,3} P (S = 2|C = c)P (C = c)
.

If less than two of the tosses landed as Heads (C = 0 and C = 1), then clearly the two slips
drawn cannot have the letter ”H” on them, hence P (S = 2|C = 0) = P (S = 2|C = 1) = 0.
Conversely, if all tosses landed as Heads, then all slips have the letter ”H” on them, hence the
two slips drawn will certainly be with the letter ”H”, thus P (S = 2|C = 3) = 1. Lastly, if one
of the slips has the letter ”T” on them, then the probability that we picked the other two is
1
3
, as we can pick 2 slips out of the 3,

(
3
2

)
= 3 ways, and we can pick two slips with the letter

”H” only one way, therefore P (S = 2|C = 2) = 1
3
. Calculating the probabilities P (C = c) as

before,

P (C = 3|S = 2) =
1 · 1/8

1 · 1/8 + 1/3 · 3/8
=

1

2
.

By having access to the information that we drew 2 slips with the letter ”H” we not only
know that at least two of the flips landed as Heads, but we also know that drawing 2 ”H”
out of 3 ”H”-s is three times as likely than drawing 2 ”H” out of 2 ”H” and 1 ”T”, hence the
conditional probability is ”upweighted”.

Exercise 6. A bag contains one marble which is either green or blue, with equal probabilities. A
green marble is put in the bag (so there are 2 marbles now), and then a random marble is taken
out. The marble taken out is green. What is the probability that the remaining marble is also
green?

Solution 6. Let A be the event that the initial marble is green, B be the event that the removed
marble is green, and C be the event that the remaining marble is green. We need to find P (C|B).
There are several ways to find this; one natural way is to condition on whether the initial marble is
green:

P (C|B) = P (C|B,A)P (A|B) + P (C|B,Ac)P (Ac|B) = 1 · P (A|B) + 0 · P (Ac|B)

To find P (A|B), use Bayes’ Rule:

P (A|B) =
P (B|A)P (A)

P (B)
=

0.5

P (B|A)P (A) + P (B|Ac)P (Ac)
=

0.5

1 · 0.5 + 0.5 · 0.5
=

2

3
.

So P (C|B) = 2
3
.

Exercise 7. Suppose that there are 5 blood types in the population, named type 1 through type
5, with probabilities p1, p2, . . . , p5. A crime was committed by two individuals. A suspect, who has
blood type 1, has prior probability p of being guilty. At the crime scene, blood evidence is collected,
which shows that one of the criminals has type 1 and the other has type 2.
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Find the posterior probability that the suspect is guilty, given the evidence. Does the evidence
make it more likely or less likely that the suspect is guilty, or does this depend on the values of
the parameters p, p1, p2, . . . , p5? If it depends on these values, give a simple criterion for when the
evidence makes it more likely that the suspect is guilty.

Solution 7. Denote the event of the suspect being guilty with G and the blood sample collected
being type 1 and type 2 with BS. Then, the probability of interest is P (G|BS). Using Bayes’ rule
and the law of total probability

P (G|BS) =
P (G,BS)

P (BS)

=
P (BS|G)P (G)

P (BS|G)P (G) + P (BS|Gc)P (Gc)
.

The probability of obtaining blood samples type 1 and type 2 if the suspected individual is guilty,
is p2, as, besides the type 1 sample left by the guilty suspect, the type 2 sample had to be left by
someone else from the total population. Similarly, if the suspect is not guilty, then the probability
of obtaining type 1 and type 2 samples is 2p1p2, as we are indifferent to the order of the sample
obtained. Then the probability of interest is

P (G|BS) =
p2 · p

p2 · p+ 2p1p2 · (1− p)
=

p

p+ 2p1 · (1− p)
.

The evidence makes the suspect more likely to be guilty, if the posterior probability is greater than
the prior, i.e. if

p

p+ 2p1 · (1− p)
> p,

that corresponds to 1−p > 2p1(1−p) ⇐⇒ 1/2 > p1, and correspondingly the posterior probability
decreases with respect to the prior, if 1/2 < p1, while it stays the same if p1 = 1/2.
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